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Abstract

This paper studies the vibration of a truss structure composed of a number of rigidly connected Timoshenko beams. The

excitation is provided by a moving oscillator of an unsprung mass that supports another mass through a spring (oscillator)

and moves on top of the truss structure. Each component beam of the structure is meshed with a number of Timoshenko

beam elements. The finite-element (FE) modes of the whole structure are first obtained for the nodes of the FE mesh and

then they are converted into an analytical form that is constructed over all the elements of the top deck of the truss through

the element shape functions, whereby the location of the moving oscillator is easily tracked and the displacement

continuity and force equilibrium conditions at the contact point can be easily implemented. This numerical–analytical

combined approach has the advantage of the versatility of the FE method in dealing with structures (trusses or frames in

this paper) of arbitrary configurations and the special efficiency and convenience of the analytical method in dealing with

moving loads. Vibration of the truss structure and vibration of the oscillator are studied through simulated examples. It is

found that the dynamic response can be several times higher than the relevant static response at high speeds. It is also

found that the dynamic contact force can be much higher than its static value and may become negative if the contact

between the oscillator and the truss is assumed to be constantly maintained. Interestingly, suitably chosen parameter values

can bring the dynamic response and the dynamic contact force close to their respective static values.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration of a stationary structure excited by another structure moving on the surface of the stationary
structure is very common in engineering, such as vibration of bridges or railway track under travelling
vehicles. In the simplest case, the moving structure may be modelled as a constant force or a mass or an
oscillator while the stationary structure may be modelled as a single or continuous beam [1–4] or any of these
on a viscous-elastic foundation [5]. Analytical solutions of simple moving-load problems can be found in
Frýba’s monograph [6]. For a moving flexible body [7], numerical methods must be used.

Model refinement can be made to the moving structure or the stationary structure or both to better represent
real structures. In the case of the moving structure, a train was modelled as a two-axle mass-spring-damper
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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system supporting a rigid body in Refs. [8,9] and as a system of multiple oscillators in Ref. [10]. As for the
stationary structure, various types of bridges were studied by a number of researchers [11–18]. There is a wealth
of publications on vehicle–bridge interaction. Interested readers should also refer to the comprehensive review
paper by Au et al. [18]. The monograph by Yang et al. [19] also provides an in-depth study of vehicle–bridge
interaction dynamics.

Many bridges are made from pin-connected or rigidly-connected (through welding or bolted joints) beams
in various configurations. The vibration of a bridge in the form of a simple plane frame excited by moving
loads was studied in Ref. [12]. A plane truss structure excited by a moving oscillator is the subject of this
paper. As shear may be important in many cases, Timoshenko beam theory [20] is used. A mass in contact
with the stationary structure and supporting another mass through a spring as a simplistic representation of a
vehicle is the model for the moving structure and is referred to as a moving oscillator. A regular finite element
(FE) mesh is used for each beam component for the truss structure studied in this paper. Numerical modes
and frequencies of the truss are obtained using MATLAB. For more complicated structures, an adaptive FE
mesh [21] may be used. The modes obtained for the nodes of the mesh are then replaced with analytical forms
for mathematical convenience and numerical efficiency in solving this moving-load problem. The equations of
motion for the whole system are solved numerically for efficiency. The computing code is capable of
automatically generating a number of typical truss configurations. To the authors’ best knowledge, dynamic
interaction between a truss structure and a moving oscillator has not been studied in the past. The difference
between the horizontal location of the moving oscillator and the actual coordinate of the supporting structure
caused by the axial motion and the beam rotation is investigated for the first time.

2. Theoretical basis of the numerical–analytical methodology

It is known that even for a single-span beam with classical boundary conditions higher frequencies and
modes are very sensitive to small errors inherent in the calculation using the analytical method [22,23] and
hence are difficult to determine accurately. The main reason is that the exponential functions in a high
(analytical) beam mode produce huge numbers and the transcendental equation in the natural frequencies of
the beam becomes increasingly ill-conditioned. So for the sake of both accuracy and versatility (in modelling
various configurations of structures), the FE method is used to obtain the modes at first. When the number of
the finite elements used is sufficient, the FE modes will be very close to the analytical modes and can be
considered a substitute of the analytical modes after conversion using the element shape functions.

It is demonstrated in Appendix A that the analytical modes of a continuous Euler beam resting on three
supports are orthogonal. For more complicated structures, such as the truss structure shown in Fig. 1,
orthoganality of the analytical modes should still hold but are difficult to demonstrate.

The equations of free vibration of each component beam modelled as a Timoshenko beam in its local
coordinate x are [20]
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Fig. 1. A truss made of rigidly connected beams.
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where w and y are the transverse displacement and the rotation of the cross-section of the beam, E, G and g are
Young’s modulus, shear modulus and shear factor, r is the mass density, A and I are the area and second
moment of area of the beam cross-section. Denote the analytical w-component and y-component modes of the
k-th beam as cwkðxÞ and cykðxÞ, which consist of base functions of sin, co-sin, hyper-sin and hyper-co-sin
functions when expressed exactly [24]. Through the displacement continuity and equilibrium conditions at the
joints where more than one component beam meets, a matrix equation in the coefficients of the base functions
for all the beams can be derived. Natural frequencies of the whole structure can be computed in theory from
the equation that the determinant of the above matrix vanishes. However, this determinant equation is a
highly transcendental one and hence it is very difficult to actually solve accurately. This difficulty can be
appreciated from a simpler problem of computing higher frequencies and modes of an Euler beam [23].
Naturally the FE method presents a simple and versatile way of computing the frequencies and modes of a
structure of arbitrary configuration and hence is used.

On the other hand, there is a big advantage of using an analytical formulation for a moving-load problem in
that when a load moves in the spatial domain, its location always corresponds to a degree-of-freedom
(a continuous coordinate) in an analytical formulation. This allows easy enforcement of displacement
continuity and force equilibrium of the moving and stationary bodies at the moving coordinate. In contrast, in
an FE formulation, the moving load is located in different element domains at different time, hence it is
difficult to track its location constantly and in particular relate its motion to that of the FE nodal displacement
vector as it traverses different element domains. Apparently, the numerical procedure for a moving-load
problem using the FE method is more complicated and less accurate than using an analytical method, if the
latter affords an analytical expression of modes.

The arguments in the above two paragraphs poses a dilemma: the advantage of using analytical method in
dealing with moving loads and the advantage of using the FE method in determining the frequencies and
modes. A numerical–analytical combined approach is put forward, which takes advantages of both methods.
Each component beam is divided into a number of Timoshenko beam elements [25]. The frequencies and
modes are obtained by the FE method. Denote the n-th numerical mode wFE

n of the truss structure as
fw1; y1;w2; y2; . . . ;wi; yi;wiþ1; yiþ1; . . . g

T
n , where subscript i denotes the left node of the i-th beam element and

the right node of the (i�1)-th beam element, and superscript T stands for matrix transpose. When the number
of beam elements is sufficient, the numerical modes and frequencies will be very close to the exact (analytical)
modes and frequencies of the whole structure. Denote the i-th element shape function matrix for
w-displacement by NwiðxÞ. Then one gets an approximate expression of the n-th analytical mode of the top
deck as

cwnðxÞ ¼

Nw1ðx1Þfw1; y1;w2; y2gT when x1 within element 1 domain

Nw2ðx2Þfw2; y2; w3; y3gT when x2 within element 2 domain

:

:

:

NwiðxiÞfwi; yi;wiþ1; yiþ1g
T when xi within element i domain

:

:

:

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

(2)

where xi is the local horizontal coordinate of the i-th element in the top deck. This procedure of converting
numerical modes to the approximate analytical modes also works for yðx; tÞ and any other displacements.

The equation motion of the truss subjected to the dynamic contact force fc from the moving oscillator by the
FE method is

M€uþ Ku ¼ f (3)

whereM and K are the mass and stiffness matrices of the truss, u and f are, respectively the nodal displacement
vector and force vector of the truss. The dot over a symbol represents differentiation with respect to time t.
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Only the vertical forces and bending moments at the left node and the right node of the element where fc is
acting instantaneously are not zero and the rest of f are zero. The nodal displacement vector of the whole
structure can be expressed as

uðtÞ ¼
X

n

wFE
n qnðtÞ ¼ WqðtÞ (4)

where qnðtÞ is the n-th modal coordinate of the truss structure and vector qðtÞ ¼ fq1ðtÞ; q2ðtÞ; . . . ; g
T, wFE

n is the
n-th FE mode of the truss structure and W is formed by a number of wFE

n (in the order of ascending
frequencies).

3. Kinematics of the moving load in relation to the truss

During vibration, a beam moves to a new location due to its axial motion. In addition, the cross-section of a
beam rotates. As a result of both motions, a point on the top fibre of the beam at x now becomes x*, in the un-
deformed coordinate system, as shown in Fig. 2. Hochlenert [26] considered position surface loads due to the
rotation of the cross-section of a moving beam and a rotating disc. The kinematic relationship between its un-
deformed location and the deformed one of the same point is

x� ¼ vt ¼ xþ uðx; tÞ � hyðx; tÞ (5)

where u is the axial displacement and h is half of the beam height.
The mass-normalised FE modes for the horizontal displacement components, the vertical displacement

components and the rotation components of the cross-section of the beam in the top deck are denoted by wFE
u ,

wFE
w and wFE

y , respectively. It follows that these three displacements at the top deck can be expressed as

½uðx; tÞ wðx; tÞ yðx; tÞ� ¼ qTðtÞ½wuðxÞ wwðxÞ wyðxÞ� (6)

where wuðxÞ, wwðxÞ and wyðxÞ are approximate analytical u-component, w-component and y-component
modes converted from wFE

u , wFE
w and wFE

y through element shape functions.
In each beam element in the top deck, a new local, non-dimensional coordinate x (it should not be confused

with the old dimensional local coordinate used in Eqs. (1) and (2)) is defined for the interval [�1, 1], thus
x ¼ xi þ ðL=2Þð1þ xÞ where xi is the x-coordinate of the left-hand side node of the element and L is the length
of a beam element. The n-th analytical mode shape function for the i-th element can be approximately
expressed through the local coordinate as follows:

cun ¼ aun þ xbun (7)

cwn ¼ awn þ xbwn þ x2cwn þ x3dwn (8)
ui+1

θi

u

wi wi+1
θ

u

w
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xi

x

θi+1

Fig. 2. Kinematics of the beam finite-element.



ARTICLE IN PRESS
L. Baeza, H. Ouyang / Journal of Sound and Vibration 321 (2009) 721–734 725
cyn ¼ ayn þ xbyn þ x2cyn (9)

where the polynomial coefficients (aun, bun, awn, bwn,y) are different in each element. Substituting Eqs. (6)–(9)
into (5), one gets

x� ¼ vt ¼ xi þ
L

2
ð1þ xÞ þ qT

au1 þ hay1 þ xðbu1 þ hby1Þ þ x2hcy1

au2 þ hay2 þ xðbu2 þ hby2Þ þ x2hcy2

..

.

auj þ hayj þ xðbuj þ hbyjÞ þ x2hcyj

0
BBBBB@

1
CCCCCA (10)

where j is the number of modes used in the subsequent computations. Eq. (10) can be re-ordered, and written
in a quadratic equation in x below:

xi þ
L

2
� vtþ ðaTu þ haTy Þqþ x

L

2
þ ðbTu þ hbTy Þq

� �
þ x2hcTy q ¼ 0 (11)

where x and then the coordinate of the contact point x can be computed, and au ¼ fau1; au2; . . . ; aujg
T,

ay ¼ fay1; ay2; . . . ; ayjg
T, bu ¼ fbu1; bu2; . . . ; bujg

T, by ¼ fby1; by2; . . . ; byjg
T and cy ¼ fcy1; cy2; . . . ; cyjg

T are deter-
mined from the values of the FE modes. Taking differentiations with respect to time once and twice gives

�vþ ðau þ hay þ xðbu þ hbyÞ þ x2hcyÞ
T _qþ

L

2
þ ðbu þ hby þ 2xhcyÞ

Tq

� �
_x ¼ 0, (12)

ðaTu þ haTy þ xðbTu þ hbTy Þ þ x2hcTy Þ€qþ ð2_xðb
T
u þ hbTy Þ þ 4_xxhcTy Þ_q

þ 2_x
2
hCT

y qþ
L

2
þ ðbTu þ hbTy þ 2xhcTy Þq

� �
€x ¼ 0 (13)

where the velocity _x ¼ ðL=2Þ_x and acceleration €x ¼ ðL=2Þ€x of the truss-oscillator contact point can be
obtained.

Multiplying Eq. (13) with L/2 and writing the resultant equation in the following form

€x ¼ uT €qþ w (14)

where

u ¼ �
au þ hay þ xðbu þ hbyÞ þ x2hcy

1þ
2

L
ðbu þ hby þ 2xhcyÞ

Tq

(15)

w ¼ �

4h _x2

L
cTy qþ 2 _xðbu þ hby þ 2xhcyÞ

T _q

L

2
þ ðbu þ hby þ 2xhcyÞ

Tq

(16)

Eq. (14) relates the horizontal coordinate corresponding to the location of the moving oscillator to the modal
coordinates of the truss structure.

4. Dynamic model of the whole system

The equations of motion for the sprung and unsprung masses of the oscillator (Fig. 3) are

mz €z ¼W z � f zy (17)

my €y ¼W y þ f zy þ f c (18)

where

f zy ¼ cð_z� _yÞ þ kðz� yÞ (19)
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and W z ¼ �mzg and W y ¼ �myg are the weights of the two masses, in which g is the gravitational constant. fc

is the dynamic contact force at the oscillator–truss contact point (the moving load from the oscillator acting
onto the truss).

The equation of motion for the truss, Eq. (3), can be decoupled using the FE modes and then transformed
into an equation in the modal coordinator vector as

€qþ diag½o2�q ¼ �f cðtÞwwðxÞ (20)

where diag½o2� is a diagonal matrix of appropriate dimension whose diagonal elements are the natural
frequencies squared of the truss structure ranked in ascending order, and x (or x) is the truss-oscillator contact
point coordinate obtained from Eq. (10). Notice that wFEf ¼ �f cww is used in the derivation of the right-hand
side of Eq. (20). If damping is present in the truss and the damping matrix C can be expressed by aMþ bK or
C ¼

P
ibiK

i�1 (where a and b are constants and i is an integer), or CM�1K ¼ KM�1C, Eq. (3) can still be
decoupled [27]. It would have an additional damping term though.

It is assumed that if the unsprung mass is in contact with the truss, its vertical displacement equals the
deflection of the beam at the location represented by the un-deformed coordinate x, that is

yðtÞ ¼ qTðtÞwwðxÞ (21)

and therefore

_y ¼ _qTwþ qTw0w _x (22)

€y ¼ €qTww þ 2_qTw0w _xþ qTw00w _x
2 þ qTw0w €x (23)

where the prime represents differentiation with respect to x.
From Eqs. (18) and (20) it follows that

€qþ diag½o2�q ¼ ðW y þ f zy �my €yÞww (24)

By substituting Eqs. (14) and (23) into Eq. (24), one gets

½IþmywwwT
w þmywww

0T
w q/T

�€q ¼ wwðW y þ f zyÞ � diag½o2�q�mywwð2_q
Tw0w _xþ qTw00w _x

2 þ qTw0wwÞ (25)

where I is identity matrix of appropriate dimension. Eqs. (11), (12), (17)–(19), and (25) must be solved
simultaneously to obtain the vibration of the truss and the oscillator. Even though Eq. (25) is nonlinear, the
degree of nonlinearity is small as the contribution from the axial displacement and the rotation of the beam
cross-section is small. Eq. (25) is solved by using Runge–Kutta algorithm (ode45) available in MATLAB and
capable of dealing with nonlinear differential equations.

The proposed model considers the influence of the horizontal displacement and the rotation of
the cross-section of the component beams of the truss when it is excited by a moving oscillator in
contact. If these displacements of the top fibre of the beams of the top deck are ignored, the above
equations still apply when the condition x� ¼ vt ¼ x is imposed. As a result of this omission, Eq. (25)
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reduces to

½IþmywwwT
w�€q ¼ wwðW y þ f zyÞ � diag½o2�q�mywwð2_q

Tw0wvþ qTw00wv2Þ (26)
5. Numerical results

A numerical example of the truss shown in Fig. 1 is analysed. It has the following material and geometric
data: EI ¼ 6:3� 106 Nm2, EA ¼ 6:3� 109 N, the shear modulus is 81GPa and the shear factor is 0.9,
Lb ¼ 50m, my ¼ 100 kg, mz ¼ 1000 kg, k ¼ 3:95� 106 N=m, c ¼ 25130Ns=m, rA ¼ 225 kg=m. There are six
beams of equal length in the top deck. The height is 7.217m. The critical speed of the truss vcr ¼ 35.34m/s,
which is defined as the ratio of the fundamental frequency in Hz (o1/2p) of the truss to the lowest wave
number of a beam in the top deck. It is found that eight Timoshenko elements for each beam component
already gives converging results and therefore are used throughout the numerical analysis work.

All the dynamic values of the system are non-dimensionalised against the relevant static values when
presented in the figures below. The non-dimensionalised contact force between the moving oscillator and the
truss is shown in Fig. 4. It turns out that the difference in the dynamic contact force between the model with
and without the influence of u and y is very small, as displayed by the non-dimensionalised absolute error in
Fig. 5. The non-dimensionalised displacement of the contact point is shown in Fig. 6, while the difference
(non-dimensionalised absolute error) in the dynamic response between the models with and without the
influence of u and y is given in Fig. 7, where wst is the mid-span static deflection of the top deck when the
oscillator is located at that same position. Again it can be seen that the difference in the results between
the models with and without the influence of u and y is negligibly small. Therefore this influence can be safely
ignored and are not included in the subsequent computation.

Numerical results of yðtÞ=wst and zðtÞ=zst at various speeds of v are given in Figs. 8 and 9, respectively, where
zst is the static deflection of the sprung mass. It can be seen from Fig. 8 that at very low v, the vertical motion
of the unsprung mass is small. It is actually nearly equal to the static deflection of the truss at various locations
(the influence line). As v becomes higher, the vertical motion of the unsprung mass grows bigger in general.
At around the critical speed, the maximum vibration is more than twice as much as the maximum static
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Fig. 6. Non-dimensionalised dynamic deflection of the contact point.
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deflection of the truss. But at very high speeds, there is little motion of the unsprung mass and of the truss
since the oscillator moves so fast that the structure has hardly time to respond to the excitation of the moving
oscillator before it runs off the truss. As for the sprung mass, the parameter values chosen result in very little
variation of its motion in relation to its static value and hence afford a comfortable ride. The online version of
this article contains the animations of vibration of the system at three speeds (Annex 1: v ¼ 0:5vcr; Annex 2:
v ¼ 1:06vcr; Annex 3: v ¼ 4vcr).

Numerical results of f c=ðW y þW zÞ are shown in Fig. 10. Parameter values used are the same as in the
previous case, except that k ¼ 8:88� 103 N=m, c ¼ 1192Ns=m and rA ¼ 1125 kg=m. They are chosen in such
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Fig. 7. Difference in the dynamic deflections with and without horizontal displacement and beam rotation.
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a way that the dynamic contact force is very close to its static value. An example showing large dynamic
contact force is given in Fig. 11, where the spring stiffness has been increased to k ¼ 4:93� 106 N=m and the
viscous property of the damper is c ¼ 2800Ns=m. The dynamic contact force is shown to become negative at
around vt=L ¼ 0:9. It is clear from Fig. 11 that if the oscillator slides along the top deck of the truss, then it
loses contact toward the end of its travel on the truss. Separation of the moving structure from and its
subsequent reattachment to the supporting structure was studied for a moving-mass problem in Ref. [28] and
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for a moving oscillator problem in Refs. [29,30]. As they are very complicated to study, these two topics are
not pursued further here.

6. Conclusions

This paper studies the oscillator–truss coupled dynamic response when the oscillator moves on the truss
structure. It presents an analytical–numerical combined approach that takes advantage of both methods. The
formulation considers the horizontal variations of the oscillator–truss contact point due to the horizontal
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motion of the truss and the rotation of the beam section. The numerical results for a deck truss show that the
dynamic deflection of the truss can be several times higher than the maximum static deflection and the moving
load (dynamic contact force) can also be a few times greater than the static force (self-weight of the oscillator).
However, by using suitably chosen parameter values, the dynamic response (of the oscillator or the beam) and
the dynamic contact force can be brought very close to its static value over a very wide speed range and hence
allow a comfortable ride if the oscillator represents a vehicle.

It is found that there is only a negligible influence of the horizontal motion and the beam rotation on the
dynamic response from the examples studied. The methodology is still applicable to vibration problems where
there is a strong coupling between vertical and horizontal displacements.
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Appendix A

To demonstrate the methodology proposed in this paper, a continuous Euler beam resting on multiple
supports with classical (pinned, free or clamped) boundary conditions is used. The closed-form analytical
modes of such a beam can be obtained after solving a highly nonlinear transcendental equation in the
frequencies of the beam [31]. There is not a single mathematical expression for a mode and each mode is
defined span-wise. A mode satisfies the left and right boundary conditions and is continuous (also its
derivatives) at the intermediate support(s).

Take a two-span beam shown in Fig. A1 as an example.



ARTICLE IN PRESS

span � span �

a l - a

left boundary right boundary

x

z

intermediate support

Fig. A1. A two-span continuous beam.
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The i-th analytical mode of the whole beam may be expressed as

jiðxÞ ¼
jiaðxÞ; 0pxpm

jibðxÞ; mpxp1

(
(A.1)

where x ¼ x=l.
The i-th and j-th modes of the whole beam satisfies the following equations

EIj0000i ðxÞ � o2
i rAl4jiðxÞ ¼ 0; 0pxp1 (A.2)

EIj0000j ðxÞ � o2
j rAl4jjðxÞ ¼ 0; 0pxp1 (A.3)

The prime stands for derivative with respect to x. It is needless to say that the eigenvalue equations. (A.2) and
(A.3) apply to the whole beam and any spans of the beam.

It can be derived thatZ 1

0

jjðxÞj
0000
i ðxÞdx ¼

Z m

0

jjaðxÞj
0000
ia ðxÞdxþ

Z 1

m
jjbðxÞj

0000
ib ðxÞdx

¼ ½jjaðxÞj
000
iaðxÞ�

m
0 �

Z m

0

j0jaðxÞj
000
iaðxÞdxþ ½jjbðxÞj

000
ibðxÞ�

1
m �

Z 1

m
j0jbðxÞj

000
ibðxÞdx

¼ ½jjaðxÞj
000
iaðxÞ�

m
0 � ½j

0
jaðxÞj

00
iaðxÞ�

m
0 þ

Z m

0

j00jaðxÞj
00
iaðxÞdxþ ½jjbðxÞj

000
ibðxÞ�

1
m

� ½j0jbðxÞj
00
ibðxÞ�

1
m þ

Z 1

m
j00jbðxÞj

00
ibðxÞdx ¼

Z 1

0

j00j ðxÞj
00
i ðxÞdx

where m ¼ a=l. Note that in the above derivation, ½jjaðxÞj
000
iaðxÞ�0 ¼ 0, ½j0jaðxÞj

00
iaðxÞ�0 ¼ 0, ½jjbðxÞj

000
ibðxÞ�

1 ¼ 0,

½j0jbðxÞj
00
ibðxÞ�

1 ¼ 0 as all modes satisfy the left and right (classical) boundary conditions, and ½jjaðxÞj
000
iaðxÞ�

m þ

½jjbðxÞj
000
ibðxÞ�m ¼ 0 and ½j0jaðxÞj

00
iaðxÞ�

m þ ½j0jbðxÞj
00
ibðxÞ�m ¼ 0 due to displacement continuity at the intermediate

support.

Similarly, it can be derived that
R 1
0 jiðxÞj

0000
j ðxÞdx ¼

R 1
0 j
00
i ðxÞj

00
j ðxÞdx.

Multiplying both sides of Eq. (A.2) by jjðxÞ and Eq. (A.3) by jiðxÞ, then integrating the resultant equations
over [0, 1] and then taking away one equation from the other, yields the following relationship:

rAl4ðo2
i � o2

j Þ

Z 1

0

jiðxÞjjðxÞdx ¼ 0 (A.4)

Therefore it may be concluded that for any two distinct frequencies oi and ojZ 1

0

jiðxÞjjðxÞdx ¼ 0 ðwhen iajÞ (A.5)
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which means that the analytical modes of the whole beam of any two distinct frequencies are orthogonal to
one another.

Appendix B. Supporting Information

Supplementary data associated with this article can be found in the online version at doi:10.1016/
j.jsv.2008.09.049.
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